1. If f is bounded on $[a, b]$ and for any $c \in(a, b)$ $\left.f\right|_{[c, b]}$ is Riemann integrable, then f is Riemann integrable on $[a, b]$ and $\int_{c}^{b} f \rightarrow \int_{a}^{b} f$ as $c \rightarrow a^{+}$.

Pf: We wish to use Squeeze Theorem, ie., for any $\varepsilon>0$, find $g, h \in R[a, h]$ sit. $g<f<h$ and $\int_{a}^{b}(g-h)<\varepsilon$.
Fix $\varepsilon>0$.
Since f is bonded, there exists $M \in \mathbb{R}$ such that $-M<f<m$.
Take $c \in(a, b)$ with $c-a<\frac{\varepsilon}{2 m}$.

Let $g(x)= \begin{cases}-M, & x \in[a, c), \\ f(x), & x \in[c, b] .\end{cases}$

$$
h(x)= \begin{cases}M, & x \in[a, c) \\ f(x), & x \in[c, b] .\end{cases}
$$

Since $g=-M X_{[a, c)}+\left.f\right|_{[c, b]}$, g is Riemann integrable on $[a, b]$.

Similarly, h is Riemann intgrotle on $[a, b]$.
Since $-M<f<M, \quad g \leq f \leq h$.
Moreover, $\quad h-g=2 M X_{[a, c)}$
Thus $\quad \int_{a}^{b}(h-g)=2 M(c-a)<2 M \frac{\varepsilon}{2 M}=\varepsilon$.
By Squeeze Theorem, $f \in R[a, b]$.

$$
\begin{aligned}
\left|\int_{a}^{b} f-\int_{c}^{b} f\right|=\left|\int_{a}^{c} f\right| & \leq \int_{a}^{c}|f| \\
& \leqslant(c-a) M \rightarrow 0 \text { as } c \rightarrow a^{+} .
\end{aligned}
$$

Rok: Boundedness is necessary.
Conutor-example: $f= \begin{cases}\frac{1}{x}, & x \in(0,1], \\ 0, & x=0\end{cases}$

Since f is unbounded.
$f \notin R[0,1]$.
But $\left.f\right|_{[c, 1]} \in R[0,1]$.
2. If f and g are continuous on $[a, b]$ and $g \geqslant 0$, then there exists $c \in[a, b]$ such that

$$
\int_{a}^{b} f g=f(c) \int_{a}^{b} g
$$

Pf: Let $m=\inf _{x \in[a, b]} f(x)$ and $M=\sup _{x \in[a, b]} f(x)$
Since f is continuous, there exists $\alpha, \beta \in[a, b]$ such that $m=f(\alpha)$ and $m=f(\beta)$.

Since $m \leq f(x) \leq M$ and $g(x) \geq 0$, $m g(x) \leq f(x) g(x) \leq M g(x)$ for any $x \in[a, b]$.
Thus $m \int_{a}^{b} g \leqslant \int_{a}^{b} f g \leqslant M \int_{a}^{b} g$ and $\int_{a}^{b} g \geqslant 0$.

- If $\int_{a}^{b} g=0$, then $\int_{a}^{b} f g=0$.

$$
\int_{a}^{b} f g=f(c) \int_{a}^{b} g \text { for any } c \in[a, b] \text {. }
$$

If $\int_{a}^{b} g>0$, then $f(\alpha)=m \leq \frac{\int_{a}^{b} f y}{\int_{a}^{b} g} \leq M=f(\beta)$ By Intermediate Value Theovern, since t is continuous, there exists C between α and β such that $f(c)=\frac{\int_{a}^{b} f y}{\int_{a}^{b} g}$ of course, $c \in[a, b]$.

Rank: The continuity of g is unnecessary.
We only need $g \in R[a, b]$.

- $g \geqslant 0$ is necessary.

Counter-example: $f(x)=g(x)=x$ on $[-1,1]$.
Then $\int_{-1}^{1} f y=\int_{-1}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{-1} ^{1}=\frac{2}{3}>0$
and $\int_{-1}^{1} g=\int_{-1}^{1} x d x=0$.
$0<\int_{-1}^{1} f g \neq f(c) \int_{-1}^{1} g=0$ for any $c \in[a, b]$.
3. $L(f+g) \geqslant L(f)+L(g)$

Pf: For any partition P_{1}, P_{2} of $[a, b]$,
let $P=P_{1} \cup P_{2}$.
Exercise: You can show that $L(f ; P) \geqslant L(f ; Q)$ if $P \supset Q$.

$$
\begin{aligned}
L(f+g) \geqslant L(f+g ; P) & =\sum_{k=1}^{n} \inf \left\{f(x)+g(x): x \in\left[x_{k-1}, x_{k}\right]\right\}\left(x_{k}-x_{k-1}\right) \\
& \left.\geqslant \sum_{k=1}^{n}\left(\sim f f f(x): x \in\left[x_{k}-1, x_{k}\right]|+\cdots f| g(x): x \in\left[x_{k-1}, x_{k}\right]\right\}\right)\left(x_{k}-x_{k-1}\right) \\
& =L(f ; P)+L(g ; P) \\
& \geqslant L\left(f ; P_{1}\right)+L\left(g ; P P_{2}\right)
\end{aligned}
$$

Since P_{1} is curbitravy,

$$
L(f+g) \geqslant L(f)+L\left(g ; P_{2}\right)
$$

Since P_{2} is arbitrary,

$$
L(f+g) \geqslant L(f)+L(g) .
$$

Rok: The inequality can be strict in some cases.
Example: $f(x)=\left\{\begin{array}{l}1, x \in Q \cap[0,1], \\ 0, x \in Q^{c} \cap[0,1] .\end{array}\right.$

$$
g(x)= \begin{cases}0, & x \in \mathbb{Q} \cap[0,1], \\ 1, & x \in \mathbb{Q}^{c} \cap[0,1] .\end{cases}
$$

Them $\quad f+g \equiv 1$.
Thus $L(f+g)=1$ and $L(f)=L(g)=0$.

- We also have $U(f+g) \leqslant U(f)+U(g)$.

Since $L(f)+L(g) \leqslant L(f+g) \leqslant U(f+g) \leqslant U(f)+U(g)$, ff $f, g \in R[a, b]$, ie. $L(f)=U(f)$ and $L(y)=U(g)$, then $L(f+g)=U(f+g)$, ie. $f+g \in R[a, b]$.

